Acoustic characteristics of forage fish species in the Gulf of Alaska and Bering Sea based on Kirchhoff-approximation models

Stéphane Gauthier and John K. Horne

Abstract: Acoustic surveys are routinely used to assess fish abundance. To ensure accurate population estimates, the characteristics of echoes from constituent species must be quantified. Kirchhoff-ray mode (KRM) backscatter models were used to quantify acoustic characteristics of Bering Sea and Gulf of Alaska pelagic fish species: capelin (Mallotus villosus), Pacific herring (Clupea pallasi), walleye pollock (Theragra chalcogramma), Atka mackerel (Pleurogrammus monopterygius), and eulachon (Thaleichthys pacificus). Atka mackerel and eulachon do not have swimbladders. Acoustic backscatter was estimated as a function of insonifying frequency, fish length, and body orientation relative to the incident wave front. Backscatter intensity and variance estimates were compared to examine the potential to discriminate among species. Based on relative intensity differences, species could be separated in two major groups: fish with gas-filled swimbladders and fish without swimbladders. The effects of length and tilt angle on echo intensity depended on frequency. Variability in target strength (TS) resulting from morphometric differences was high for species without swimbladders. Based on our model predictions, a series of TS to length equations were developed for each species at the common frequencies used by fisheries acousticians.

Introduction

Acoustic surveys are used to monitor the distribution, abundance, and habitat use of fish within ecosystems. These surveys are appealing for assessment purposes as large volumes of water are rapidly sampled at high spatial and temporal resolutions. To convert acoustic signals to estimates of fish abundance, species must be properly partitioned within survey areas and the echo energy of constituent species must be known. The intensity of an echo is generally expressed on a logarithmic scale as the target strength (TS). Acoustic properties of fish are species-specific and change over time. In addition to physical characteristics such as frequency (Foote 1982), TS depends on fish size (Nakken and Olsen 1977), anatomical features (e.g., presence of a swimbladder; Foote 1980a), morphology (e.g., swimbladder shape; McClatchie et al. 1996a), and physiological state (e.g., gonadal maturation and gut fullness; Ona 1990). Fish behavior can also significantly alter TS through changes in fish orientation relative to the wave front (Nakken and Olsen 1977; Foote 1980b; Blaxter and Blatty 1990) and vertical movement within the water column, which changes swimbladder volume (Ona 1990; Mukai and Iida 1996; Rose and Porter 1996). Ideally, TS should be measured under the same conditions as those encountered when populations are surveyed. Suitable in situ conditions for the measurement of TS can be difficult to ob-
tain, especially in mixed species aggregations or within dense schools of fish.

A modeling approach provides a practical alternative to measurements and can be used to examine the amplitude and variability of acoustic backscatter as a function of single or multiple variables. Modeling exercises can also be used to compare and contrast acoustic properties among species and identify potential metrics for species discrimination and identification. The Kirchhoff-ray model (KRM) model uses low-mode solutions and Kirchhoff-ray approximations to estimate resonant and geometric backscatter using planar images of the fish body and swimbladder (Clay and Horne 1994). KRM model predictions have been successfully matched to empirical measures (Jech et al. 1995; Horne et al. 2000; Horne 2003). Matches of KRM model predictions to empirical backscatter measurements of pollack (*Pollachius pollachius*) and saithe (*Pollachius virens*) were comparable to those obtained using the boundary element model (BEM) over a frequency range of 38.1 to 120.4 kHz (Foote and Francis 2002). In the present study, KRM models are used to characterize acoustic properties of forage fish in the Gulf of Alaska and the Bering Sea. Five abundant and widely distributed species are considered: capelin (*Mallotus villosus*), Pacific herring (*Clupea pallasi*), walleye pollack (*Theragra chalcogramma*), Atka mackerel (*Pleuragrammus monopterygius*), and eulachon (*Thaleichthys pacificus*). Atka mackerel and eulachon do not possess swimbladders. Capelin and Pacific herring are physostomous (open swimbladder), whereas walleye pollock is physoclistous (closed swimbladder).

These fish species are important to the diet of many apex predators such as Steller sea lions (*Eumetopias jubatus*). Recent declines in western Steller sea lion populations in the Gulf of Alaska and the Bering Sea have increased interest in the assessment of forage fish species (Alverson 1992). It has been hypothesized that changes in the composition, distribution, and availability of fish in Steller sea lion habitat are in part responsible for their decline and lack of recovery (Rosen and Trites 2000; Stickney 2000; Trites and Donnelly 2003).

Some of the challenges associated with the acoustic assessment of forage fish around Steller sea lion rookeries, haulouts, and feeding grounds include accurate conversion of acoustic energy to fish biomass and species discrimination in mixed fish aggregations. Our work examines acoustic characteristics of these forage species and identifies possible steps in the ongoing effort to develop acoustic discrimination techniques.

Materials and methods

Radiographs and digital pictures were used to image fish bodies and swimbladders used in KRM modeling (Fig. 1). Fish were captured using hand lines or midwater trawls and were kept in aerated tanks. When possible, a period of at least 12 h was allowed for fish with swimbladders captured at depth to acclimate to surface pressure. Fish were subsequently anesthetized for a period of 30–60 s in a 10-L basin of water containing 5 mL of a 9:1 mixture of ethanol to clove oil. Once immobilized, fish were placed individually on a flat surface for lateral and dorsal imaging. Fish with a swimbladder were radiographed using a portable veterinary x-ray unit (XTEC Laseray 90P; XTEC Inc., Columbia City, Indiana). The fish were placed at a focal distance of 40–45 cm on cassettes or redipaks containing rare earth film. Fish lateral and dorsal planes were exposed at 15 mA for 2 s at 95 kVp on the redipaks (generally used for <25-cm fish) or for 0.18 s at 70 kVp on cassettes with intensifying screens (generally used for >25-cm fish). Fish without swimbladders were photographed using a 3.3-megapixel digital camera (photoPC 3000z; Epson America Inc., Long Beach, Calif.). Lateral and dorsal images of the fish body and swimbladder (when present) were traced on acetate sheets, scanned, and then digitized at 1-mm resolution. Fins and tail were not included in the trace. Orientation of the swimbladder relative to the body was maintained, and the body parts were scaled to their true size using maximum and minimum body and swimbladder measurements. When necessary, trace lines were smoothed and rotated so that the sagittal axis of the fish body was horizontal. The resulting dorsal and lateral images were elliptically interpolated into 1-mm-thick cylinders to give a three-dimensional (3D) representation of the fish body and swimbladder (Fig. 2). A series of morphometric descriptors (including swimbladder volume and area) were estimated using these 3D fish representations. Species were partitioned into groups of similar-sized individuals (10-cm length groups). The ratio of the major to minor axes of the body and swimbladder (maximum length and width) were measured on the lateral traces as an index of elongation. The eccentricity (ε) of the fish body or swimbladder was also measured as the ratio of the distance between the foci and the vertices of an ellipse having the same major and minor axes as the fish trace. Eccentricity varies between 0 and 1 (0 ≤ ε < 1, where 0 is a circle).

Swimbladders were modeled as a series of gas-filled cylinders, and fish bodies were modeled as a series of fluid-filled cylinders. The energy backscattered by the fish body and swimbladder was obtained by estimating the scattering from each cylinder (for details see Clay and Horne 1994). The scattered sound pressure (P_{scat} at time t and range R) of an object insonified by a plane incident wave (of amplitude P_{inc} at the object) is

$$P_{scat}(t,R) = (P_{inc}/R) e^{ikR-2nf} \mathcal{F}(t)$$

where k is the wave number (m$^{-1}$), f is the frequency (Hz) for the convolution of the sound wave, and $\mathcal{F}(t)$ is the scattering length (m) of the object in the time domain. Scattering amplitudes from the fish body and swimbladder were added coherently to obtain the total scattering length of the fish. The absolute square of the scattering length is equivalent to the backscattering cross section of an insonified object (σ_{bs}, m2):

$$\sigma_{bs} = |\mathcal{F}|^2$$

where \mathcal{F} is a function of the insonifying frequency and length (L, m) of the object. Our model combines these variables as a nondimensional reduced scattering length (RSL):

$$RSL = \frac{\mathcal{F}L}{\lambda}$$

where λ is the acoustic wavelength (m). RSLs obtained in the frequency domain can be converted to target strength (TS, dB) at any specified length:

$$TS = 20\log(RSL) + 20\log(L)$$
We list the parameters used in KRM modeling (Table 1). Eulachon (an anadromous species) was modeled for both marine and freshwater environments.

For each species, TS was estimated as a function of length, carrier frequency, and tilt angle. The effect of one variable (e.g., length) was modeled for each fish over an arbitrary range by controlling for the other factors (e.g., fixed frequency and tilt angle in this case). Predicted RSL values were compiled for all digitized fish to obtain a mean and standard deviation of the acoustic backscatter for each species and size group. When representing the average value for a group of individuals, TS was denoted as TS. To estimate backscatter over a common length range, fish were linearly scaled in each dimension to all lengths within the modeled range. Length ranges (at 2-mm increments) were centered on the average length of collected specimens. The effect of frequency was modeled from 12 to 420 kHz. Tilt angles were modeled at increments of 1° over a range of 45° to 135°, where 90° represents a normal aspect (i.e., lateral axis of the fish body perpendicular to the incident wave front). The effects of length and frequency were modeled at dorsal incidence (normal aspect). Frequency and tilt angle effects were modeled at various scaled fish lengths.

Model results were used to estimate tilt-averaged target strength (TS_θ) to total length (L_T) relationships for the five studied species. To estimate TS_θ, reduced scattering lengths (RSL) were generated for each individual at their actual length over a range of 45° to 135° at 1° increments. A normal distribution of tilt angles having a known mean and standard deviation (based on in situ measurements when available) was randomly sampled to provide 1000 tilt values (Table 2). Echo-intensity values were tabulated from this tilt-angle distribution and corresponding model predictions. The resulting TS_θ of individual fish were subsequently used to estimate the regression parameters for each of the five species. The models were generated as

\begin{align*}
(5) \quad TS_\theta &= a \log(L_T \text{ (cm)}) + b_a \\
(6) \quad TS_\theta &= 20 \log(L_T \text{ (cm)}) + b_{20}
\end{align*}

where a is the slope and b_a (or b_{20}) is the intercept of the regression. The regression parameters were calculated at the five frequencies most commonly used in fisheries acoustics (12, 38, 70, 120, and 200 kHz). KRM predicts TS using fish caudal lengths (length from tip of snout to end of caudal peduncle). Total lengths were estimated based on regressions between caudal lengths and total lengths from the sampled fish (Table 2).
Results

Nine fish groups were modeled. Each group consisted of at least 10 individuals of similar length. The average estimated dorsal swimbladder area varied from 6.4% to 11.3% of the total dorsal body area. Swimbladder volume varied from 2.6% to 3.7% of the total fish volume (Table 3). Capelin had the lowest values in both cases. This species also had the smallest swimbladder angle (mean of 3.9°) and the lowest swimbladder elongation (with corresponding eccentricity).

The effect of length on the mean target strength (T_S) of each species is illustrated at four different frequencies: 12, 38, 120, and 200 kHz (Fig. 3). Among fish of similar lengths, species with a swimbladder had much larger T_S than species without a swimbladder (differences of up to 15 dB). Differences were also observed among the T_S of any given species at various carrier frequencies. For example, the T_S of Pacific herring (Fig. 3b) at 12 kHz was consistently 5–10 dB higher than the T_S at 120 or 200 kHz. Intercepts, shapes, and slopes of the T_S to length regressions were also dependent on frequency. At 12 kHz, the increase in T_S with length was steep and relatively constant. At higher frequencies, successive T_S peaks and troughs were observed with increasing length. This variability in the T_S to L_T relationship was particularly marked in species without swimbladders. For example, the T_S of eulachon peaks and dips twice, spanning more than 10 dB over a 20-cm length range. Variability in T_S is attributed to constructive and destructive interference of reflected pressure waves within the fish body.

Intraspecific T_S variability was high for species without swimbladders (as illustrated by the standard deviations in Fig. 4). Walleye pollock, a species with a swimbladder, also had high intraspecific T_S variability at lengths greater than 40 cm. Capelin and Pacific herring had the smallest range in fish size and intraspecific T_S variability. T_S of fish modeled at their actual size often differed from the T_S curve obtained by scaling the lengths of all fish (Fig. 4).

Frequency-dependent backscatter at a specified length and tilt are shown (Fig. 5). Pacific herring and walleye pollock T_S values were higher at low frequencies, peaking at approximately 20 kHz. The T_S of these species dropped sharply between 20 and 100 kHz and was relatively constant in the higher frequency range. This sharp decrease in T_S was not observed for capelin, which exhibited more irregular patterns at lower frequencies. Echo-intensity variance of all fish with swimbladders dramatically increased between 12 and 100 kHz and remained relatively high thereafter. For species without swimbladders, T_S and standard deviation were highly variable across all frequencies.

Effects of orientation on T_S among species with swimbladders were pronounced at high frequencies (Fig. 6). At 12 kHz, the T_S of a 16-cm capelin or walleye pollock varied by less than 6 dB over a tilt-angle range of 45° to 135°. Pacific herring T_S decreased by more than 10 dB with increasing tilt angle, but the changes were relatively gradual. In contrast, the T_S of fish with swimbladders changed sharply with tilt angle at 120 and 200 kHz, especially with orientations approaching swimbladder dorsal incidence (sagittal axis perpendicular to the wave front). Changes in amplitude with orientation were also important at 38 kHz, but the sharp decreases in T_S occurred at greater tilt angles. It is also noteworthy that the maximum T_S for these species with swimbladders did not occur exactly at normal aspect, but at a lower head-down tilt angle (between 80° and 90°). The T_S of 16-cm Atka mackerel and eulachon varied by more than 30 dB over the range of the tilt angles modeled. The overall pattern (or shape) of the T_S – tilt angle relationship for these species without swimbladders was not affected by frequency. At 38 kHz, T_S of these fish displayed more variation over small tilt-angle ranges than at 200 or 12 kHz. Changes in T_S with tilt angle are not symmetrical and depend on the orientation of the individual relative to the wave front (head-down versus head-up) (Fig. 6).

In most cases, T_S values were lower than the T_S for the same individuals modeled at a 90° tilt (Fig. 4). Differences between these two values were highest for capelin and...
Mean and standard deviation (in parentheses) for morphological characteristics of the five fish species used in the Kirchhoff-ray mode (KRM) modeling.

| Species | L (cm) | Area % | Sb volume % | Area % | Sb volume % | Sb angle | Body angle | Body e | Note: All lengths are in centimeters. L, the mean total length of the collected specimens. L', the (caudal) length range used in the model; Sh, swimbladder, swimbladder areas were measured in of the fish body (positive values indicate that the anterior of the swimbladder is above the sagittal axis); x/y, ratio of major to minor axes as measured on the lateral traces; e, eccentricity for corresponding ellipse. | |
|------------------|----------|---------|-------------|---------|-------------|----------|------------|--------|--|
| Capelin | 34 | 14.2 (1.2) | 10–20 | 10.8 (0.6) | 1.5 (0.5) | 6.4 (1.3) | 2.6 (0.7) | 3.9 (0.6) | |
| Pacific herring | 30 | 23.7 (1.7) | 10–30 | 12.8 (2.3) | 6.7 (2.2) | 11.3 (1.4) | 3.6 (0.6) | 7.8 (1.0) | |
| Walleye pollock | 15 | 15.4 (1.2) | 10–20 | 3.0 (0.8) | 0.9 (0.4) | 8.4 (0.9) | 2.7 (0.6) | 6.7 (3.0) | |
| Atka mackerel | 10 | 20.5 (2.0) | 10–30 | — | — | — | — | 5.8 (0.8) | |
| Eulachon | 30 | 17.9 (2.0) | 10–20 | — | — | — | — | 4.1 (1.0) | |

Note: All lengths are in centimeters. L, the mean total length of the collected specimens. L', the (caudal) length range used in the model; Sh, swimbladder, swimbladder areas were measured in of the fish body (positive values indicate that the anterior of the swimbladder is above the sagittal axis); x/y, ratio of major to minor axes as measured on the lateral traces; e, eccentricity for corresponding ellipse.
no published data exist on target strengths of Atka mackerel.
Experiments on encaged mackerel (*Scomber scombus*) in the
Atlantic suggest a $b_{20} 1.7-5.7$ dB lower (Edwards et al.
1984) than those found in our study. TS estimates for eulachon
modeled in marine conditions were similar to those ob-
tained for Atka mackerel of the same length. Predicted
eulachon TS from KRM tilt-averaged models adjusted for
freshwater were similar to in situ TS measurements of eula-
chon at 123 kHz (tilt-averaged model = -54.5 dB; mean in
situ = -53.5 dB; mean fork length = 18.1 cm) and 208 kHz
(tilt-averaged model = -54.9 dB; mean in situ = -50.3 dB;
mean fork length = 17.1 cm) in the lower Fraser River, Brit-
ish Columbia (B. Stables, Shuksan Fisheries Consulting,
P.O. Box 485, Sumas, WA 98295, USA, personal
communication). Even though the 4.6 dB difference at
208 kHz appears large, predicted eulachon backscatter can
differ by up to 4 dB within a 1-cm change in length.
Because of the large density and sound speed contrasts of
gas and water, the echo intensity of a fish primarily depends
on the presence or absence of a gas-filled swimbladder
(Haslett 1962; Foote 1980a). Contributions of fish flesh and
other organs to the total backscatter of a fish are minimal
compared with the contributions from the swimbladder.
Density and sound speed within the swimbladder will
change with gas composition, depth, and temperature. Air is
highly compressible compared with water and fish flesh. Its
density increases proportionally to pressure (air density = 122.76 kg·m⁻³ at 1000 m). Changes in swimbladder volume as fish change depth according to Boyle’s law can have a much more drastic effect on resulting backscatter intensity than density of sound speed contrasts (e.g., Mukai and Iida 1996; Gorska and Ona 2003). Changes in density and sound speed of water also influence KRM model predictions. As an example, TS of eulachon in freshwater were on average 3–4 dB higher than in seawater. Density and sound speed of water are easily calculated using ambient temperature, salinity, and depth (e.g., Mackenzie 1981; UNESCO 1983). Density and sound speed contrasts at interfaces will greatly affect the acoustic scattering of non-gas-bearing organisms (Stanton et al. 2000). Density and sound speeds of fish flesh...
have been documented for a limited number of species (Qiu et al. 1999; McClatchie and Ye 2000; Barr 2001). Changing the sound speed (1548–1570 m·s$^{-1}$) and density (1030–1070 kg·m$^{-3}$) of fish flesh for eulachon and Atka mackerel altered the intercept values from the regressions by as much as 10 dB, but generally not the slopes or shapes of the curves (Gauthier and Horne, unpublished data).

TS of a species depends on several factors that potentially interact. These include the shape and length of the fish, the orientation (i.e., tilt, roll), and the insonyfing frequency. Morphometric (i.e., shape) differences within a species result in variable TS from fish of the same length, especially for species without swimbladders. The extent of this variability, as well as the effects of length on TS, depends on frequency. At 12 kHz, the increase in TS with increasing fish length was relatively constant. At higher frequencies, interactions of the wavelength within the fish body created more constructive and destructive interference. This typically results in more variable TS responses with increasing fish length. The effect of orientation on TS also depends on the presence or absence of a swimbladder and frequency. At 12 kHz, tilt angle has little effect on the TS of fish with swimbladders because of the small ratio of swimbladder length to acoustic wavelength. At any single frequency, the effects are more pronounced as fish size and corresponding swimbladder size increases. Maximum TS occurs at a tilt an-

Fig. 5. Mean target strength (TS, bounded by the standard deviation) as a function of frequency for fish scaled to 16 cm: (a) capelin (Mallotus villosus), (b) Pacific herring (Clupea pallasii), (c) walleye pollock (Theragra chalcogramma), (d) Atka mackerel (Pleurogrammus monopterygius), and (e) eulachon (Thaleichthys pacificus).
The swimbladder in teleost fish typically angles 5° to 10° posterior (Horne and Clay 1998). As the fish body is tilted downward, the swimbladder reaches normal aspect, maximizing the area exposed to the incident wave front. At high frequency (200 kHz), TS decreased sharply as tilt angle deviated from this maxima. Capelin had the lowest swimbladder elongation (and corresponding eccentricity) and showed the least TS variation with tilt angle at any frequency. Capelin also had the lowest proportional swimbladder volume and dorsal area. For species without swimbladders, maximum TS occurred at 90° and decreased gradually. Tilt–TS functions for these species were not as affected by frequency as fish with swimbladders. TS was more sensitive to small changes in tilt angle at higher frequencies.

We used tilt-averaged TS for the TS–length regressions to represent natural variations of tilt angles within fish populations. Among species with swimbladders, the largest difference between TS at normal incidence (90°) and tilt-averaged TS was observed for capelin. This was a surprising result as capelin TS were least affected by tilt angle. The standard deviation of the tilt distribution was higher than that of Pacific herring or walleye pollock. The average tilt angle was head-up for capelin (Carscadden and Miller 1980) versus the head-down orientation for Pacific herring and walleye.
pollock. The swimbladder angle for capelin was closer to horizontal, and the response of TS to tilt had a sharper peak at 38 kHz. The combination of tilt range, fish orientation, and tilt-dependent backscatter resulted in lower tilt-averaged TS for capelin than for the other species with swimbladders.

It is noteworthy that the log-linear regressions for walleye pollock and Atka mackerel had slopes near 20. Slopes of TS–θ–LT regressions often differed from 20 for other species, especially capelin and eulachon. Given the relatively small length range available for these species, it is difficult to ascertain definitive values for the regression parameters. The large differences in goodness of fit (r²) observed between the log-linear and 20log models suggest that it may not always be appropriate to express TS results using a 20log regression (cf. McClatchie et al. 1996b, 2003). Our modeled data also illustrate that regression parameters depend on frequency (especially for species with swimbladders) and that frequency-dependent scattering may be useful for species discrimination.

From our modeling results, we conclude that backscatter characteristics differ among the five species. As expected, the greatest differences were between fish with and without swimbladders. Variability in TS resulting from morphometric differences was high, especially for species without swimbladders. Tilt angle affected backscatter responses. TS–tilt functions also depended on the presence or absence of a swimbladder and its orientation within the fish body. Effects of fish length and tilt angle on TS were frequency-dependent. The slopes of TSθ–LT regressions were in many cases different than 20. Based on these results, the next logical step in this work is to examine potential discriminatory metrics using species-specific acoustic properties. Future efforts should also be directed at comparing model predictions with in situ measurements of monospecific and mixed aggregations of fish.

Acknowledgements

We would like to thank Jason Sweet and Rick Towler for their assistance in the field and with the analyses. Funding for this project was provided by the NMFS Steller Sea Lion Research Initiative (award number NA17FX1407), the North Pacific Universities Marine Mammal Consortium (award number NA16FX2629), the Office of Naval Research (N00014–00–1–0180), and the Alaska Fisheries Science Center (NA17RJ1232-AM01).

<table>
<thead>
<tr>
<th>Species</th>
<th>f (kHz)</th>
<th>Slope (a)</th>
<th>b_a</th>
<th>r²</th>
<th>b_20</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capelin</td>
<td>12</td>
<td>40.0</td>
<td>–93.7</td>
<td>0.54</td>
<td>–70.8</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>24.9</td>
<td>–75.0</td>
<td>0.35</td>
<td>–69.3</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>11.1</td>
<td>–61.2</td>
<td>0.12</td>
<td>–71.3</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>28.4</td>
<td>–81.8</td>
<td>0.62</td>
<td>–72.2</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>22.3</td>
<td>–75.9</td>
<td>0.51</td>
<td>–73.2</td>
<td>0.52</td>
</tr>
<tr>
<td>Pacific herring</td>
<td>12</td>
<td>21.2</td>
<td>–64.1</td>
<td>0.01</td>
<td>–62.4</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>13.3</td>
<td>–55.9</td>
<td>0.34</td>
<td>–65.1</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>19.5</td>
<td>–66.1</td>
<td>0.35</td>
<td>–66.8</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>21.0</td>
<td>–69.0</td>
<td>0.29</td>
<td>–67.6</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>24.2</td>
<td>–74.3</td>
<td>0.32</td>
<td>–68.5</td>
<td>0.33</td>
</tr>
<tr>
<td>Walleye pollock</td>
<td>12</td>
<td>21.7</td>
<td>–68.1</td>
<td>0.96</td>
<td>–65.5</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>19.2</td>
<td>–66.0</td>
<td>0.96</td>
<td>–67.2</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>20.0</td>
<td>–68.2</td>
<td>0.96</td>
<td>–68.2</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>21.1</td>
<td>–70.5</td>
<td>0.95</td>
<td>–68.9</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>22.5</td>
<td>–73.1</td>
<td>0.96</td>
<td>–69.4</td>
<td>0.95</td>
</tr>
<tr>
<td>Atka mackerel</td>
<td>12</td>
<td>17.9</td>
<td>–79.1</td>
<td>0.86</td>
<td>–82.3</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>18.5</td>
<td>–81.0</td>
<td>0.91</td>
<td>–83.2</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>22.6</td>
<td>–87.6</td>
<td>0.92</td>
<td>–83.7</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>19.9</td>
<td>–83.4</td>
<td>0.97</td>
<td>–83.6</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>19.6</td>
<td>–83.1</td>
<td>0.93</td>
<td>–83.6</td>
<td>0.93</td>
</tr>
<tr>
<td>Eulachon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine</td>
<td>12</td>
<td>40.3</td>
<td>–109.7</td>
<td>0.90</td>
<td>–83.4</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>27.3</td>
<td>–94.0</td>
<td>0.66</td>
<td>–84.5</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>25.0</td>
<td>–90.9</td>
<td>0.79</td>
<td>–84.4</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>15.3</td>
<td>–77.6</td>
<td>0.51</td>
<td>–83.7</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>21.5</td>
<td>–86.0</td>
<td>0.80</td>
<td>–84.0</td>
<td>0.80</td>
</tr>
<tr>
<td>Freshwater</td>
<td>12</td>
<td>39.8</td>
<td>–104.6</td>
<td>0.92</td>
<td>–80.1</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>26.5</td>
<td>–89.5</td>
<td>0.74</td>
<td>–81.1</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>23.5</td>
<td>–85.6</td>
<td>0.78</td>
<td>–81.1</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>15.0</td>
<td>–73.8</td>
<td>0.61</td>
<td>–80.3</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>20.5</td>
<td>–81.3</td>
<td>0.84</td>
<td>–80.7</td>
<td>0.84</td>
</tr>
</tbody>
</table>
References

